Tetrahedron Letters No. 41, pp 3965 - 3968. © Pergamon Press Ltd. 1979. Printed in Great Britain.

STRUCTURAL INVESTIGATION OF AN ANTIBIOTIC SPORAVIRIDIN II.¹ APPLICATION OF ¹³C-NMR TO THE STRUCTURAL ELUCIDATION OF VIRIDOPENTAOSE B

Ken-ichi Harada, Susumu Ito, and Makoto Suzuki^{*} Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan

Summary: A new heteropentasaccharide named viridopentaose B was obtained by aqueous ammonia hydrolysis of N-acetylsporaviridin and the structure was established by the detailed analysis of 13 C-NMR spectra with those of further degradation products.

Sporaviridin (SVD) is a weakly basic antibiotic produced by *Streptosporan-gium viridogriseum*² and is considered to be a compound containing oligosaccharide moiety as the structural unit. In this paper we would like to report the isolation and structural elucidation of a new heteropentasaccharide, one of the degradation products of SVD, viridopentaose B, by the detailed analysis of ¹³C-NMR spectra.

N-Acetylsporaviridin (N-Ac-SVD), a derivative obtained by treatment of SVD with acetic anhydride in MeOH, was subjected to mild hydrolysis with 7% NH₄OH. The resulting reaction products were separated by Sephadex LH-20 and silica gel column chromatography to give an aglycone moiety and three pentasaccharides. One of the three pentasaccharides was designated viridopentaose B ($\underline{1}$, mp 207-209°(dec.), $C_{36}H_{61}N_{3}O_{19}\cdot5H_{2}O$, $[\alpha]_{D}^{20}$ -31.7°(c 0.3, MeOH), IR(KBr): 3500-3200 cm⁻¹ ($\nu_{OH/NH}$), 1650-1620 cm⁻¹ (ν_{CO}), $\underline{1}_{H-NMR}(CD_{3}OD)$: δ 1.95(NHCOCH₃)), which gave each anomeric pair of methyl 4-acetamide-4,6-dideoxy- \underline{p} -glucopyranoside($\underline{2}$, methyl N-acetyl- \underline{p} -viosaminide)³, methyl 6-deoxy- \underline{p} -glucopyranoside($\underline{3}$, methyl \underline{p} -quinovoside)⁴, and methyl 3-acetamide-2,3,6-trideoxy- \underline{p} -arabino-hexopyranoside($\underline{4}$, methyl N-acetyl- \underline{p} -acosaminide)¹ on exhausive methanolysis.

Field desorption (FD) mass spectrum of $\underline{1}$ showed an important cluster ion peak (M+Na)⁺ at m/z 862, which indicated the molecular weight of $\underline{1}$. Further, chemical ionization (CI) mass spectra of the permethylated viridopentaose B using isobutane and ammonia as reagent gases gave the valuable informations. Thus, a quasi-molecular ion (M·NH₄⁺) peak was observed at m/z 997 and the fragment ion peaks at m/z 781 and 582 were consistent with tetra- and tri-saccharide ions, respectively, which were available for the determination of the sequence of the monosaccharide units mentioned above (Figure).

	Table	¹³ C-NMF	R chemical	shifts of	compound	s <u>1</u> ~ <u>8</u> ª		
	<u>1</u>	<u>5</u>	<u>6</u>	<u>7</u>				
Viosamine					Methyl	N-acetylv Ø	iosaminide β	(<u>2</u>)
C-1	105.4	105.2	105.2	105.8		100.8	104.9	
C-2	74.9	74.8	74.9	75.1		73.9	75.2	
C-3	75.7	75.9	75.9	75.9		72.2	75.5	
C-4	58.1	58.0	58.1	58.1		58.1	58.1	
C-5	72.3	72.2	72.2	72.3		67.5	72.1	
C-6	18.4	18.3	18.3	18.4 ^d		18.1	18.2	
						Ouinov	ose (8)	
Quinovose						α	β	
C-1	93.4	92.9	92.9	100.9		93.6	97.7	
C-2	83.0	81.8	81.8	82.9		73.9	76.3	
C-3	73.2	71.9	71.8	73.5		74.5	77.6	
C~4	86.0	87.2	87.1	77.0		77.3	76.9	
C-5	67.8	66.4	66.4	68.4		68.1	73.1	
C-6	18.4	18.0	18.0	18.1 ^d		18.1	18.1	
Quinovose					Met	hyl quino	voside (<u>3</u>) R	
						ů.	P	
C-1'	101.0	104.4	104.4			100.9	105.0	
C-2'	76.25	74.1	74.9			73.5	75.0	
C-3'	76.9 ^b	86.9	77.3			74.7	77.6	
C-4'	75.7	74.8	76.4			77.1	76.8	
C-5'	73.5	73.0	73.3			68.4	73.1	
C-6'	18.4	18.0	18.0			18.0	18.0	
Acosamine					Methyl	N~acetyla	cosaminide	(<u>4</u>)
ACOSAMINE						α	β	
C-1	101.50	102.1				98.7	102.0	
C-2	38.1	37.9				36.9	38.1	
C-3	52.6	52.3				49.7	52.4	
C-4	75.3	75.5				76.5	75.9	
C-5	74.9	74.8				69.5	74.6	
C-6	18.9	18.3				18.3	18.3	

Acosamine

C-1'	101.90
C-2'	38.1
C-3'	52.6
C-4'	75.3
C-5'	74.9
C-6'	18.9

a $^{13}{\rm C-NMR}$ spectra were recorded on a JEOL JNM-FX100 NMR spectrometer at 25.05MHz in CD₃OD with IMS as an internal reference.

b, c, d Assignments may be reversed in each vertical column.

The degradative reactions of $\underline{1}$ by use of partial methanolysis conditions yielded tetrasaccharide $\underline{5}$, mp 235-237°(dec.) and trisaccharide $\underline{6}$, mp 216-219° (dec.). The latter was further led to disaccharide $\underline{7}$, mp 136-139°(dec.) (Scheme).

The ¹³C-NMR chemical shifts of <u>1</u> could be assigned by comparison with those of <u>2</u>, <u>3</u>, <u>4</u>, <u>5</u>, <u>6</u>, <u>7</u>, and <u>8</u> (Table), as follows. The ¹³C-NMR spectrum of <u>1</u> showed five signals due to anomeric carbons. The resonance at 93.4 ppm represented an anomeric carbon of the reducing <u>D</u>-quinovosyl residue(α -configuration). Three of the four remaining signals, except for that of the non-reducing <u>D</u>-quinovose moiety, were assignable to the anomeric carbon in a β -configuration as compared with the chemical shifts of the corresponding methyl glycosides. The last signal at 101.0 ppm suggested the presence of the anomeric carbon in an α -configuration at first. However, the 3.4 ppm downfield shifts were observed at C-1 of the nonreducing <u>D</u>-quinovosyl residue in <u>5</u> and <u>6</u>, when the acosamines were removed from <u>1</u> by selective methanolysis⁵. Consequently, the anomeric carbon of the nonreducing <u>D</u>-quinovosyl residue should be also in a β -configuration.

By considering glycosidation shift⁶ (83.0 ppm at C-2 and 86.0 ppm at C-4 in the reducing <u>D</u>-quinovose moiety) and the sterically hindered adjacent diglycosidation⁵ (76.2 and 76.9 ppm at C-2 and C-3 in the non-reducing <u>D</u>-quinovose moiety), the four glycosidic linkages in <u>1</u> were determined at C-2 and C-4 positions of the reducing <u>D</u>-quinovose and at C-2 and C-3 positions of the non-reducing <u>D</u>quinovose moiety.

Finally, it was proved that viridopentaose B was an $O-(N-acety1-\beta-\underline{D}-acosaminopyranosy1)-(1+2)-O-[N-acety1-\beta-\underline{D}-acosaminopyranosy1-(1+3)]-O-\beta-\underline{D}-quinovopyranosy1-(1+4)-O-[N-acety1-\beta-\underline{D}-viosaminopyranosy1-(1+2)]-\alpha-\underline{D}-quinovopyranose.$

References

- Part I. "Isolation and determination of <u>D</u>-acosamine from a basic antibiotic, Sporaviridin" K. I. Harada, S. Ito, and M. Suzuki, Carbohyd. Res., in press.
- T. Okuda, Y. Ito, T. Yamaguchi, T. Furumai, M. Suzuki, and M. Tsuruoka, J. Antibiotics, Ser. A, <u>19</u>, 85(1966).
- C. L. Stevens, P. Blumbergs, F. A. Daniher, D. H. Otterbach, and K. G. Tatlor, J. Org. Chem., 31, 2822(1966).
- 4. M. E. Evans, L. Long, Jr., and F. W. Parrish, J. Org. Chem., 33, 1074(1968).
- 5. a) N. Yamaoka, T. Usui, H. Sugiyama, and S. Seto, Chem. Pharm. Bull., (Tokyo), <u>22</u>, 2196(1974). b) R. U. Lemieux, and H. Driguez, J. Am. Chem. Soc., <u>97</u>, 4063(1975).
- 6. a) T. Usui, N. Yamaoka, K. Matsuda, K. Tuzimura, H. Sugiyama, and S. Seto, J. Chem. Soc. Perkin I, 2425(1973). b) P. A. J. Gorin, Carbohyd. Res., <u>39</u>, 3(1975). c) K. Tori, S. Seo, Y. Yoshimura, M. Nakamura, Y. Tomita, and H. Ishii, Tetrahedron Lett., 4163(1976). d) R. Kasai, M. Suzuo, J. Asakawa, and O. Tanaka, Tetrahedron Lett., 175(1977).